La prova consiste in sette quesiti a risposta multipla, tre quesiti a risposta numerica e tre problemi di cui si richiede lo svolgimento. Le risposte ai quesiti vanno fornite tramite lo schema nell’apposito foglio. È ammesso l’uso di riga e compasso; è vietato qualsiasi strumento di calcolo o di comunicazione, così come la consultazione di testi o appunti. La durata della prova è di tre ore e mezza.

Si ricorda che è proibito, a pena di esclusione, scrivere il proprio nominativo o altri segni di riconoscimento, nei fogli contenenti il testo o lo svolgimento della prova; il nominativo va riportato esclusivamente nell’apposita busta piccola che dovrà essere sigillata.

Si fa inoltre presente che le domande della prova non sono disposte in ordine di difficoltà.

QUESITI A RISPOSTA MULTIPLA

Per ciascuno dei quesiti da 1 a 7, scegliere una (e solo una) delle cinque possibili risposte ed indicarla nell’apposito foglio. Per ogni quesito saranno attribuiti:

- 0 punti se la risposta è errata (o se viene indicata più di una risposta);
- 1,5 punti in caso di risposta mancante;
- 5 punti in caso di risposta esatta.

(1) Un’urna contiene palline bianche e palline nere. Si estraggo successivamente e con reimmissione 3 palline dall’urna. Qual è il massimo (al variare della proporzione tra palline bianche e palline nere) della probabilità che esattamente 2 delle 3 palline siano bianche?

 A. $\frac{4}{27}$
 B. $\frac{1}{3}$
 C. $\frac{1}{2}$
 D. $\frac{4}{9}$
 E. $\frac{2}{3}$

(2) Sono note le misure dei lati del triangolo ABC, vale a dire $AB = 23$ m, $BC = 212$ m, $CA = 203$ m. Sia D il punto interno al lato BC che si trova a 2 m dal vertice C. Le circonferenze inscritte nei triangoli ABD e ACD toccano il segmento AD nei punti S e T. Quanti metri misura il segmento ST?

 A. 192
 B. 189
 C. 190
 D. 194
 E. 196

(3) Per quanti valori del parametro k i polinomi $x^2 + kx + 1$ e $x^2 + x + k$ hanno almeno una radice in comune?

 A. 0
 B. 1
 C. 2
 D. 3
 E. infiniti
(4) Un triangolo isoscele ha base e altezza di 16 metri. Quanto distano tra loro l’ortocentro (intersezione delle altezze) e il circocentro (centro della circonferenza circoscritta) del triangolo?

A. 2
B. 1
C. \(\sqrt{5} \)
D. 4
E. \(2\sqrt{5} \)

(5) Nadia ha in programma una lunga camminata di 10 Km. Sa di mantenere una velocità costante di 6 Km/h nei tratti in pianura e discesa, ma di ridurla a 3 Km/h nei tratti in salita. Conoscendo il percorso, ha calcolato che impiegherà 2 ore. Quanti chilometri percorrerà in salita?

A. 2
B. \(\frac{8}{3} \)
C. 3
D. \(\frac{10}{3} \)
E. 4

(6) Dato il triangolo rettangolo con cateti \(AB = 30 \) e \(BC = 40 \), sia \(P \) il punto sull’ipotenusa che rende minima la lunghezza del segmento \(MN \) dove \(M \) e \(N \) sono le proiezioni ortogonali di \(P \) sui due cateti \(AB \) e \(BC \). Calcolare la lunghezza di \(MN \)

A. 18
B. 20
C. 24
D. 30
E. nessuna delle precedenti

(7) Linda ha fatto una passeggiata con la famiglia nel bosco e ha raccolto tantissime castagne. Vuole dividerle in sacchetti, aventi tutti lo stesso numero di castagne. Prova a mettere 22 castagne per sacchetto, ma gliene avanza una, allora prova a metterne 23, ma gliene avanza nuovamente una, allora decide di metterne 24 per sacchetto, e gliene avanza di nuovo una. Quante castagne ha raccolto al minimo Linda?

A. tra 3000 e 5000
B. tra 5001 e 7000
C. tra 7001 e 9000
D. tra 9001 e 11000
E. più di 11000

QUESITI A RISPOSTA NUMERICA

Per ciascuno dei quesiti da 8 a 10, la risposta consiste in un numero intero. Si richiede di trascrivere nell’apposito foglio esclusivamente tale numero, senza commenti o spiegazioni ulteriori. Saranno attribuiti:

- 0 punti per ogni risposta errata;
- 0 punti per ogni risposta non data;
- 5 punti per ogni risposta esatta.

(8) I numeri da 1 a 1000 sono disposti in ordine su un cerchio. Partendo da 1, facciamo una croce su un numero ogni quattordici (quindi marchiamo 1, 15, 29, ...). Continuiamo il procedimento fino a che non troviamo un numero già marchato. Quanti numeri restano non marcati?

(9) Su ogni faccia di un cubo è scritto un numero intero positivo. Si associa ad ogni vertice del cubo il prodotto dei numeri scritti sulle facce che si intersecano in tale vertice. Se la somma dei numeri associati ai vertici è 385, quanto vale la somma dei numeri sulle facce?

(10) Quante sono le soluzioni di \(\tan(x) + x^{2019} = 0 \) quando \(x \in [0, 314] \)?
PROBLEMI

Risolvere i seguenti problemi, motivando adeguatamente le risposte.
Una proposizione contenuta nel testo di un problema, della quale sia richiesta la dimostrazione, può comunque essere utilizzata per affrontare le parti successive del problema stesso, anche qualora non sia stata svolta la dimostrazione richiesta.

Per ogni problema verrà assegnato un punteggio da 0 a 20.

(1) Per ogni intero positivo \(n \) scriviamo \((n)_3\) per la sua rappresentazione in base 3. Ad esempio, \(15 = (120)_3 \), dato che \(15 = 9 + 6 \). Definiamo adesso \(f(n) \) come quel numero la cui rappresentazione in base 3 è ottenuta sostituendo ogni 2 con un 1 ed ogni 1 con un 2 nella rappresentazione in base 3 di \(n \). Ad esempio, \(f(15) = f((120)_3) = (210)_3 = 21 \).

(a) Mostrare che esistono infinite soluzioni dell’equazione \(f(x) = 2x \).

(b) Mostrare che esistono infinite soluzioni dell’equazione \(f(x) = x/2 \).

(c) Dimostrare che per ogni \(x \in \mathbb{N} \), risulta \(x/2 \leq f(x) \leq 2x \).

(d) Per quali numeri \(c \) esiste una soluzione dell’equazione \(f(x) = x + c \)?

(2) È assegnato un quadrilatero convesso \(ABCD \). Sia \(E \) il punto d’intersezione delle sue diagonali \(AC \) e \(BD \). Si indichino, nell’ordine, con \(a, b, c, d \) le aree dei triangoli \(ABE, BCE, CDE, DAE \) rispettivamente.

(a) Dimostrare che \(ac = bd \).

(b) Dimostrare che, se i lati \(AB \) e \(CD \) sono paralleli, si ha \(b = d \).

(c) Dimostrare che, se i lati \(AB \) e \(CD \) sono paralleli, l’area del quadrilatero \(ABCD \) è pari a \(\frac{(a+b)^2}{a} \).

(d) Dimostrare che, se i lati \(AB \) e \(CD \) sono paralleli e \(CD \) è il triplo di \(AB \), l’area del quadrilatero \(ABCD \) è pari a 16a.

(3) Sia dato \(x \in \mathbb{R} \) tale che \(x + \frac{2}{x} = 2019 \).

(a) Mostrare che \(x^2 + \left(\frac{2}{x}\right)^2 \) e \(x^3 + \left(\frac{2}{x}\right)^3 \) sono interi.

(b) Detto \(a_n = x^n + \left(\frac{2}{x}\right)^n \), mostrare che \(a_{n+2} = 2019a_{n+1} - 2a_n \). Dedurre che \(x^n + \left(\frac{2}{x}\right)^n \) è intero per ogni \(n \in \mathbb{N} \).

(c) Mostrare che \(x^n + \left(\frac{2}{x}\right)^n \) risulta sempre essere dispari se \(n \geq 1 \).

(d) Mostrare che 2019 divide \(x^n + \left(\frac{2}{x}\right)^n \) se e solo se \(n \) è dispari.